APPENDIX J TO PART 50—PRIMARY REACTOR CONTAINMENT LEAKAGE TESTING FOR WATER-COOLED POWER REACTORS This appendix includes two options, A and B, either of which can be chosen for meeting the requirements of this appendix. #### OPTION A—PRESCRIPTIVE REQUIREMENTS #### Table of Contents - I. Introduction. - II. Explanation of terms. - III. Leakage test requirements. - A. Type A test. - B. Type B test. - C. Type C test. - D. Periodic retest schedule. - IV. Special test requirements. - A. Containment modifications. - B. Multiple leakage-barrier containments. - V. Inspection and reporting of tests. - A. Containment inspection. - B. Repordkeeping of test results. #### I. INTRODUCTION One of the conditions of all operating licenses under this part and combined licenses under part 52 of this chapter for water-cooled power reactors as specified in §50.54(o) is that primary reactor containments shall meet the containment leakage test requirements set forth in this appendix. These test requirements provide for preoperational and periodic verification by tests of the leaktight integrity of the primary reactor containment, and systems and components which penetrate containment of cooled power reactors, and establish the acceptance criteria for these tests. The purposes of the tests are to assure that (a) leakage through the primary reactor containment and systems and components penetrating primary containment shall not exceed allowable leakage rate values as specified in the technical specifications or associated bases; and (b) periodic surveillance of reactor containment penetrations and isolation valves is performed so that proper maintenance and repairs are made during the service life of the containment, and systems and components penetrating primary containment. These test requirements may also be used for guidance in establishing appropriate containment leakage test requirements in technical specifications or associated bases for other types of nuclear power reactors. #### II. EXPLANATION OF TERMS A. "Primary reactor containment" means the structure or vessel that encloses the components of the reactor coolant pressure boundary, as defined in §50.2(v), and serves as an essentially leak-tight barrier against the uncontrolled release of radioactivity to the environment. - B. "Containment isolation valve" means any valve which is relied upon to perform a containment isolation function. - C. "Reactor containment leakage test program" includes the performance of Type A, Type B, and Type C tests, described in II.F, II.G. and II.H. respectively. - D. "Leakage rate" for test purposes is that leakage which occurs in a unit of time, stated as a percentage of weight of the original content of containment air at the leakage rate test pressure that escapes to the outside atmosphere during a 24-hour test period. - E. "Overall integrated leakage rate" means that leakage rate which obtains from a summation of leakage through all potential leakage paths including containment welds, valves, fittings, and components which penetrate containment. - F. "Type A Tests" means tests intended to measure the primary reactor containment overall integrated leakage rate (1) after the containment has been completed and is ready for operation, and (2) at periodic intervals thereafter. - G. "Type B Tests" means tests intended to detect local leaks and to measure leakage across each pressure-containing or leakage-limiting boundary for the following primary reactor containment penetrations: - 1. Containment penetrations whose design incorporates resilient seals, gaskets, or sealant componds, piping penetrations fitted with expansion bellows, and electrical penetrations fitted with flexible metal seal assemblies. - 2. Air lock door seals, including door operating mechanism penetrations which are part of the containment pressure boundary. - 3. Doors with resilient seals or gaskets except for seal-welded doors. - 4. Components other than those listed in II.G.1, II.G.2, or II.G.3 which must meet the acceptance criteria in III.B.3. - H. "Type C Tests" means tests intended to measure containment isolation valve leakage rates. The containment isolation valves included are those that: - 1. Provide a direct connection between the inside and outside atmospheres of the primary reactor containment under normal operation, such as purge and ventilation, vacuum relief, and instrument valves: - 2. Are required to close automatically upon receipt of a containment isolation signal in response to controls intended to effect containment isolation; - 3. Are required to operate intermittently under postaccident conditions; and - 4. Are in main steam and feedwater piping and other systems which penetrate containment of direct-cycle boiling water power reactors. - I. Pa (p.s.i.g.) means the calculated peak containment internal pressure related to the ## Pt. 50, App. J design basis accident and specified either in the technical specification or associated bases. - J. Pt (p.s.i.g.) means the containment vessel reduced test pressure selected to measure the integrated leakage rate during periodic Type A tests. - K. La (percent/24 hours) means the maximum allowable leakage rate at pressure Pa as specified for preoperational tests in the technical specifications or associated bases, and as specified for periodic tests in the operating license or combined license, including the technical specifications in any referenced design certification or manufactured reactor used at the facility. - L. Ld (percent/24 hours) means the design leakage rate at pressure, Pa, as specified in the technical specifications or associated bases. - M. Lt (percent/24 hours) means the maximum allowable leakage rate at pressure Pt derived from the preoperational test data as specified in III.A.4.(a)(iii). - N. Lam, Ltm (percent/24 hours) means the total measured containment leakage rates at pressure Pa and Pt, respectively, obtained from testing the containment with components and systems in the state as close as practical to that which would exist under design basis accident conditions (e.g., vented, drained, flooded or pressurized). - O. "Acceptance criteria" means the standard against which test results are to be compared for establishing the functional acceptability of the containment as a leakage limiting boundary. # III. LEAKAGE TESTING REQUIREMENTS A program consisting of a schedule for conducting Type A, B, and C tests shall be developed for leak testing the primary reactor containment and related systems and components penetrating primary containment pressure boundary. Upon completion of construction of the primary reactor containment, including installation of all portions of mechanical, fluid, electrical, and instrumentation systems penetrating the primary reactor containment pressure boundary, and prior to any reactor operating period, preoperational and periodic leakage rate tests, as applicable, shall be conducted in accordance with the following: A. Type A test—1. Pretest requirements. (a) Containment inspection in accordance with V. A. shall be performed as a prerequisite to the performance of Type A tests. During the period between the initiation of the containment inspection and the performance of the Type A test, no repairs or adjustments shall be made so that the containment can be tested in as close to the "as is" condition as practical. During the period between the completion of one Type A test and the initiation of the containment inspection for the subsequent Type A test, repairs or adjustments shall be made to components whose leakage exceeds that specified in the technical specification as soon as practical after identification. If during a Type A test, including the supplemental test specified in III.A.3.(b), potentially excessive leakage paths are identified which will interfere with satisfactory completion of the test, or which result in the Type A test not meeting the acceptance criteria III.A.4.(b) or III.A.5.(b), the Type A test shall be terminated and the leakage through such paths shall be measured using local leakage testing methods. Repairs and/or adjustments to equipment shall be made and Type A test performed. The corrective action taken and the change in leakage rate determined from the tests and overall integrated leakage determined from local leak and Type A tests shall be included in the summary report required by V.B. - (b) Closure of containment isolation valves for the Type A test shall be accomplished by normal operation and without any preliminary exercising or adjustments (e.g., no tightening of valve after closure by valve motor). Repairs of maloperating or leaking valves shall be made as necessary. Information on any valve closure malfunction or valve leakage that require corrective action before the test, shall be included in the summary report required by V.B. - (c) The containment test conditions shall stabilize for a period of about 4 hours prior to the start of a leakage rate test. - (d) Those portions of the fluid systems that are part of the reactor coolant pressure boundary and are open directly to the containment atmosphere under post-accident conditions and become an extension of the boundary of the containment shall be opened or vented to the containment atmosphere prior to and during the test. Portions of closed systems inside containment that penetrate containment and rupture as a result of a loss of coolant accident shall be vented to the containment atmosphere. All vented systems shall be drained of water or other fluids to the extent necessary to assure exposure of the system containment isolation valves to containment air test pressure and to assure they will be subjected to the post accident differential pressure. Systems that are required to maintain the plant in a safe condition during the test shall be operable in their normal mode, and need not be vented. Systems that are normally filled with water and operating under post-accident conditions, such as the containment heat removal system, need not be vented. However, the containment isolation valves in the systems defined in III.A.1.(d) shall be tested in accordance with III.C. The measured leakage rate from these tests shall be included in the summary report required by V.B. - 2. Conduct of tests. Preoperational leakage rate tests at either reduced or at peak pressure, shall be conducted at the intervals specified in III.D. - 3. Test Methods. (a) All Type A tests shall be conducted in accordance with the provisions of the American National Standards N45.4-1972, "Leakage Rate Testing of Containment Structures for Nuclear Reactors," March 16, 1972. In addition to the Total time and Point-to-Point methods described in that standard, the Mass Point Method, when used with a test duration of at least 24 hours. is an acceptable method to use to calculate leakage rates. A typical description of the Mass Point method can be found in the American National Standard ANSI/ANS 56.8-1987, "Containment System Leakage Testing Requirements," January 20, 1987. Incorporation of ANSI N45.4-1972 by reference was approved by the Director of the Federal Register. Copies of this standard, as well as ANSI/ANS-56.8-1987, "Containment System Leakage Testing Requirements" (dated January 20, 1987) may be obtained from the American Nuclear Society, 555 North Kensington Avenue, La Grange Park, IL 60525. A copy of each of these standards is available for inspection at the NRC Library, 11545 Rockville Pike, Rockville, Maryland 20852- - (b) The accuracy of any Type A test shall be verified by a supplemental test. An acceptable method is described in Appendix C of ANSI N45.4-1972. The supplemental test method selected shall be conducted for sufficient duration to establish accurately the change in leakage rate between the Type A and supplemental test. Results from this supplemental test are acceptable provided the difference between the supplemental test data and the Type A test data is within 0.25 La (or 0.25 Lt). If results are not within 0.25 La (or 0.25 Lt), the reason shall be determined, corrective action taken, and a successful supplemental test performed. - (c) Test leakage rates shall be calculated using absolute values corrected for instrument error. - 4. Preoperational leakage rate tests. (a) Test pressure—(1) Reduced pressure tests. (i) An initial test shall be performed at a pressure Pt, not less than 0.50 Pa to measure a leakage rate Ltm - (ii) A second test shall be performed at pressure Pa to measure a leakage rate Lam. - (iii) The leakage characteristics yielded by measurements Ltm and Lam shall establish the maximum allowable test leakage rate Lt of not more than La (Ltm/Lam). In the event Ltm/Lam is greater than 0.7, Lt shall be specified as equal to La (Pt/Pa). <sup>1</sup> - $^1\mathrm{Such}$ inservice inspections are required by $\S 50.55\mathrm{a}.$ - (2) Peak pressure tests. A test shall be performed at pressure Pa to measure the leakage rate Lam. - (b) Acceptance criteria—(1) Reduced pressure tests. The leakage rate Ltm shall be less than 0.75 Lt. - (2) Peak pressure tests. The leakage rate Lam shall be less than 0.75 La and not greater than Ld. - 5. Periodic leakage rate tests—(a) Test pressure. (1) Reduced pressure tests shall be conducted at Pt: - (2) Peak pressure tests shall be conducted at Pa. - (b) Acceptance criteria—(1) Reduced pressure tests. The leakage rate Ltm shall be less than 0.75 Lt. If local leakage measurements are taken to effect repairs in order to meet the acceptance criteria, these measurements shall be taken at a test pressure Pt. - (2) Peak pressure tests. The leakage rate Lam shall be less than 0.75 La. If local leakage measurements are taken to effect repairs in order to meet the acceptance criteria, these measurements shall be taken at a test pressure Pa. - 6. Additional requirements. (a) If any periodic Type A test fails to meet the applicable acceptance criteria in III.A.5.(b), the test schedule applicable to subsequent Type A tests will be reviewed and approved by the Commission. - (b) If two consecutive periodic Type A tests fail to meet the applicable acceptance criteria in III.A.5(b), notwithstanding the periodic retest schedule of III.D., a Type A test shall be performed at each plant shutdown for refueling or approximately every 18 months, whichever occurs first, until two consecutive Type A tests meet the acceptance criteria in III.A.5(b), after which time the retest schedule specified in III.D. may be resumed. - B. Type B tests—1. Test methods. Acceptable means of performing preoperation and periodic Type B tests include: - (a) Examination by halide leak-detection method (or by other equivalent test methods such as mass spectrometer) of a test chamber, pressurized with air, nitrogen, or pneumatic fluid specified in the technical specifications or associated bases and constructed as part of individual containment penetrations. - (b) Measurement of the rate of pressure loss of the test chamber of the containment penetration pressurized with air, nitrogen, or pneumatic fluid specified in the technical specifications or associated bases. - (c) Leakage surveillance by means of a permanently installed system with provisions for continuous or intermittent pressurization of individual or groups of containment penetrations and measurement of rate of pressure loss of air, nitrogen, or pneumatic fluid specified in the technical specification or associated bases through the leak paths. ## Pt. 50, App. J - 2. Test pressure. All preoperational and periodic Type B tests shall be performed by local pneumatic pressurization of the containment penetrations, either individually or in groups, at a pressure not less than Pa. - 3. Acceptance criteria. (See also Type C tests.) (a) The combined leakage rate of all penetrations and valves subject to Type B and C tests shall be less than 0.60 La, with the exception of the valves specified in III.C.3. - (b) Leakage measurements obtained through component leakage surveillance systems (e.g., continuous pressurization of individual containment components) that maintains a pressure not less than Pa at individual test chambers of containment penetrations during normal reactor operation, are acceptable in lieu of Type B tests. - C. Type C tests—1. Test method. Type C tests shall be performed by local pressurization. The pressure shall be applied in the same direction as that when the value would be required to perform its safety function, unless it can be determined that the results from the tests for a pressure applied in a different direction will provide equivalent or more conservative results. The test methods in III.B.1 may be substituted where appropriate. Each valve to be tested shall be closed by normal operation and without any preliminary exercising or adjustments (e.g., no tightening of valve after closure by valve motor). - 2. Test pressure. (a) Valves, unless pressurized with fluid (e.g., water, nitrogen) from a seal system, shall be pressurized with air or nitrogen at a pressure of Pa. - (b) Valves, which are sealed with fluid from a seal system shall be pressurized with that fluid to a pressure not less than 1.10 Pa. - 3. Acceptance criterion. The combined leakage rate for all penetrations and valves subject to Type B and C tests shall be less than 0.60 La. Leakage from containment isolation valves that are sealed with fluid from a seal system may be excluded when determining the combined leakage rate: Provided, That; - (a) Such valves have been demonstrated to have fluid leakage rates that do not exceed those specified in the technical specifications or associated bases, and - (b) The installed isolation valve seal-water system fluid inventory is sufficient to assure the sealing function for at least 30 days at a pressure of 1.10 Pa. - D. Periodic retest schedule—1. Type A test. (a) After the preoperational leakage rate tests, a set of three Type A tests shall be performed, at approximately equal intervals during each 10-year service period. The third test of each set shall be conducted when the plant is shutdown for the 10-year plant inservice inspections. $^{2}\,$ - (b) Permissible periods for testing. The performance of Type A tests shall be limited to periods when the plant facility is non-operational and secured in the shutdown condition under the administrative control and in accordance with the safety procedures defined in the license. - 2. Type B tests. (a) Type B tests, except tests for air locks, shall be performed during reactor shutdown for refueling, or other convenient intervals, but in no case at intervals greater than 2 years. If opened following a Type A or B test, containment penetrations subject to Type B testing shall be Type B tested prior to returning the reactor to an operating mode requiring containment integrity. For primary reactor containment penetrations employing a continuous leakage monitoring system, Type B tests, except for tests of air locks, may, notwithstanding the test schedule specified under III.D.1.. be performed every other reactor shutdown for refueling but in no case at intervals greater than 3 years. - (b)(i) Air locks shall be tested prior to initial fuel loading and at 6-month intervals thereafter at an internal pressure not less than P<sub>a</sub>. - (ii) Air locks opened during periods when containment integrity is not required by the plant's Technical Specifications shall be tested at the end of such periods at not less than P<sub>a</sub>. - (iii) Air locks opened during periods when containment integrity is required by the plant's Technical Specifications shall be tested within 3 days after being opened. For air lock doors opened more frequently than once every 3 days, the air lock shall be tested at least once every 3 days during the period of frequent openings. For air lock doors having testable seals, testing the seals fulfills the 3-day test requirements. In the event that the testing for this 3-day interval cannot be at Pa, the test pressure shall be as stated in the Technical Specifications. Air lock door seal testing shall not be substituted for the 6-month test of the entire air lock at not less than Pa. - (iv) The acceptance criteria for air lock testing shall be stated in the Technical Specifications. - 3. Type C tests. Type C tests shall be performed during each reactor shutdown for refueling but in no case at intervals greater than 2 years. ## IV. SPECIAL TESTING REQUIREMENTS A. Containment modification. Any major modification, replacement of a component $<sup>^2\,\</sup>mathrm{Such}$ inservice inspections are required by §50.55a. which is part of the primary reactor containment boundary, or resealing a seal-welded door, performed after the preoperational leakage rate test shall be followed by either a Type A, Type B, or Type C test, as applicable for the area affected by the modification. The measured leakage from this test shall be included in the summary report required by V.B. The acceptance criteria of III.A.5.(b), III.B.3., or III.C.3., as appropriate, shall be met. Minor modifications, replacements, or resealing of seal-welded doors, performed directly prior to the conduct of a scheduled Type A test do not require a separate test. B. Multiple leakage barrier or subatmospheric containments. The primary reactor containment barrier of a multiple barrier or subatmospheric containment shall be subjected to Type A tests to verify that its leakage rate meets the requirements of this appendix. Other structures of multiple barrier or subatmospheric containments (e.g., secondary containments for boiling water reactors and shield buildings for pressurized water reactors that enclose the entire primary reactor containment or portions thereof) shall be subject to individual tests in accordance with the procedures specified in the technical specifications, or associated bases. #### V. INSPECTION AND REPORTING OF TESTS A. Containment inspection. A general inspection of the accessible interior and exterior surfaces of the containment structures and components shall be performed prior to any Type A test to uncover any evidence of structural deterioration which may affect either the containment structural integrity or leak-tightness. If there is evidence of structural deterioration, Type A tests shall not be performed until corrective action is taken in accordance with repair procedures, non destructive examinations, and tests as specified in the applicable code specified in §50.55a at the commencement of repair work. Such structural deterioration and corrective actions taken shall be included in the summary report required by V.B. B. Recordkeeping of test results. 1. The preoperational and periodic tests must be documented in a readily available summary report that will be made available for inspection, upon request, at the nuclear power plant. The summary report shall include a schematic arrangement of the leakage rate measurement system, the instrumentation used, the supplemental test method, and the test program selected as applicable to the preoperational test, and all the subsequent periodic tests. The report shall contain an analysis and interpretation of the leakage rate test data for the Type A test results to the extent necessary to demonstrate the acceptability of the containment's leakage rate in meeting acceptance criteria. 2. For each periodic test, leakage test results from Type A, B, and C tests shall be in- cluded in the summary report. The summary report shall contain an analysis and interpretation of the Type A test results and a summary analysis of periodic Type B and Type C tests that were performed since the last type A test. Leakage test results from type A. B. and C tests that failed to meet the acceptance criteria of III.A.5(b), III.B.3, and III.C.3, respectively, shall be included in a separate accompanying summary report that includes an analysis and interpretation of the test data, the least squares fit analysis of the test data, the instrumentation error analysis, and the structural conditions of the containment or components, if any, which contributed to the failure in meeting the acceptance criteria. Results and analyses of the supplemental verification test employed to demonstrate the validity of the leakage rate test measurements shall also be included. # OPTION B—PERFORMANCE-BASED REQUIREMENTS Table of Contents I. Introduction. II. Definitions. III. Performance-based leakage-test requirements. A. Type A test. B. Type B and C tests. $IV.\ Record keeping.$ V. Application. #### I. INTRODUCTION One of the conditions required of all operating licenses and combined licenses for light-water-cooled power reactors as specified in §50.54(o) is that primary reactor containments meet the leakage-rate test requirements in either Option A or B of this appendix. These test requirements ensure that (a) leakage through these containments or systems and components penetrating these containments does not exceed allowable leakage rates specified in the technical specifications; and (b) integrity of the containment structure is maintained during its service life. Option B of this appendix identifies the performance-based requirements and criteria for preoperational and subsequent periodic leakage-rate testing.3 # II. DEFINITIONS Performance criteria means the performance standards against which test results are to <sup>&</sup>lt;sup>3</sup>Specific guidance concerning a performance-based leakage-test program, acceptable leakage-rate test methods, procedures, and analyses that may be used to implement these requirements and criteria are provided in Regulatory Guide 1.163, "Performance-Based Containment Leak-Test Program." #### Pt. 50, App. J be compared for establishing the acceptability of the containment system as a leakage-limiting boundary. Containment system means the principal barrier, after the reactor coolant pressure boundary, to prevent the release of quantities of radioactive material that would have a significant radiological effect on the health of the public. Overall integrated leakage rate means the total leakage rate through all tested leakage paths, including containment welds, valves, fittings, and components that penetrate the containment system. La (percent/24 hours) means the maximum allowable leakage rate at pressure Pa as specified in the Technical Specifications. Pa (p.s.i.g) means the calculated peak containment internal pressure related to the design basis loss-of-coolant accident as specified in the Technical Specifications. # III. PERFORMANCE-BASED LEAKAGE-TEST REQUIREMENTS #### A. Type A Test Type A tests to measure the containment system overall integrated leakage rate must be conducted under conditions representing design basis loss-of-coolant accident containment peak pressure. A Type A test must be conducted (1) after the containment system has been completed and is ready for operation and (2) at a periodic interval based on the historical performance of the overall containment system as a barrier to fission product releases to reduce the risk from reactor accidents. A general visual inspection of the accessible interior and exterior surfaces of the containment system for structural deterioration which may affect the containment leak-tight integrity must be conducted prior to each test, and at a periodic interval between tests based on the performance of the containment system. leakage rate must not exceed the allowable leakage rate (La) with margin, as specified in the Technical Specifications. The test results must be compared with previous results to examine the performance history of the overall containment system to limit leak- #### B. Type B and C Tests Type B pneumatic tests to detect and measure local leakage rates across pressure retaining, leakage-limiting boundaries, and Type C pneumatic tests to measure containment isolation valve leakage rates, must be conducted (1) prior to initial criticality, and (2) periodically thereafter at intervals based on the safety significance and historical performance of each boundary and isolation valve to ensure the integrity of the overall containment system as a barrier to fission product release to reduce the risk from reactor accidents. The performance-based testing program must contain a performance criterion for Type B and C tests, consideration of leakage-rate limits and factors that are indicative of or affect performance, when establishing test intervals, evaluations of performance of containment system components, and comparison to previous test results to examine the performance history of the overall containment system to limit leakage. The tests must demonstrate that the sum of the leakage rates at accident pressure of Type B tests, and pathway leakage rates from Type C tests, is less than the performance criterion (La) with margin, as specified in the Technical Specification. #### IV. RECORDKEEPING The results of the preoperational and periodic Type A, B, and C tests must be documented to show that performance criteria for leakage have been met. The comparison to previous results of the performance of the overall containment system and of individual components within it must be documented to show that the test intervals established for the containment system and components within it are adequate. These records must be available for inspection at plant sites. If the test results exceed the performance criteria (La) as defined in the plant Technical Specifications, those exceedances must be assessed for Emergency Notification System reporting under §\$50.72 (b)(1)(ii) and §50.72 (b)(2)(i), and for a Licensee Event Report under §50.73 (a)(2)(ii). # V. APPLICATION #### A. Applicability The requirements in either or both Option B, III.A for Type A tests, and Option B, III.B for Type B and C tests, may be adopted on a voluntary basis by an operating nuclear power reactor licensee as specified in \$50.54 in substitution of the requirements for those tests contained in Option A of this appendix. If the requirements for tests in Option B, III.A or Option B, III.B are implemented, the recordkeeping requirements in Option B, IV for these tests must be substituted for the reporting requirements of these tests contained in Option A of this appendix. # B. Implementation - 1. Specific exemptions to Option A of this appendix that have been formally approved by the AEC or NRC, according to 10 CFR 50.12, are still applicable to Option B of this appendix if necessary, unless specifically revoked by the NRC. - 2. A licensee or applicant for an operating license under this part or a combined license under part 52 of this chapter may adopt Option B, or parts thereof, as specified in Section V.A of this appendix, by submitting its implementation plan and request for revision to technical specifications (see paragraph B.3 of this section) to the Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate. - 3. The regulatory guide or other implementation document used by a license or applicant for an operating license under this part or a combined license under part 52 of this chapter to develop a performance-based leakage-testing program must be included, by general reference, in the plant technical specifications. The submittal for technical specification revisions must contain justification, including supporting analyses, if the licensee chooses to deviate from methods approved by the Commission and endorsed in a regulatory guide. - 4. The detailed licensee programs for conducting testing under Option B must be available at the plant site for NRC inspection. [38 FR 4386, Feb. 14, 1973; 38 FR 5997, Mar. 6, 1973, as amended at 41 FR 16447, Apr. 19, 1976; 45 FR 62789, Sept. 22, 1980; 51 FR 40311, Nov. 6, 1986; 53 FR 45891, Nov. 15, 1988; 57 FR 61786, Dec. 29, 1992; 59 FR 50689, Oct. 5, 1994; 60 FR 13616, Mar. 14, 1995; 60 FR 49504, Sept. 26, 1995; 72 FR 49508, Aug. 28, 2007; 73 FR 5723, Jan. 31, 20081 ### APPENDIX K TO PART 50—ECCS EVALUATION MODELS - I. Required and Acceptable Features of Evaluation Models. - II. Required Documentation. # I. REQUIRED AND ACCEPTABLE FEATURES OF THE EVALUATION MODELS A. Sources of heat during the LOCA. For the heat sources listed in paragraphs I.A.1 to 4 of this appendix it must be assumed that the reactor has been operating continuously at a power level at least 1.02 times the licensed power level (to allow for instrumentation error), with the maximum peaking factor allowed by the technical specifications. An assumed power level lower than the level specified in this paragraph (but not less than the licensed power level) may be used provided the proposed alternative value has been demonstrated to account for uncertainties due to power level instrumentation error. A range of power distribution shapes and peaking factors representing power distributions that may occur over the core lifetime must be studied. The selected combination of power distribution shape and peaking factor should be the one that results in the most severe calculated consequences for the spectrum of postulated breaks and single failures that are analyzed. 1. The Initial Stored Energy in the Fuel. The steady-state temperature distribution and stored energy in the fuel before the hypo- thetical accident shall be calculated for the burn-up that yields the highest calculated cladding temperature (or, optionally, the highest calculated stored energy.) To accomplish this, the thermal conductivity of the $\rm UO_2$ shall be evaluated as a function of burnup and temperature, taking into consideration differences in initial density, and the thermal conductance of the gap between the $\rm UO_2$ and the cladding shall be evaluated as a function of the burn-up, taking into consideration fuel densification and expansion, the composition and pressure of the gases within the fuel rod, the initial cold gap dimension with its tolerances, and cladding creep. - 2. Fission Heat. Fission heat shall be calculated using reactivity and reactor kinetics. Shutdown reactivities resulting from temperatures and voids shall be given their minimum plausible values, including allowance for uncertainties, for the range of power distribution shapes and peaking factors indicated to be studied above. Rod trip and insertion may be assumed if they are calculated to occur. - 3. Decay of Actinides. The heat from the radioactive decay of actinides, including neptunium and plutonium generated during operation, as well as isotopes of uranium, shall be calculated in accordance with fuel cycle calculations and known radioactive properties. The actinide decay heat chosen shall be that appropriate for the time in the fuel cycle that yields the highest calculated fuel temperature during the LOCA. - 4. Fission Product Decay. The heat generation rates from radioactive decay of fission products shall be assumed to be equal to 1.2 times the values for infinite operating time in the ANS Standard (Proposed American Nuclear Society Standards—"Decay Energy Release Rates Following Shutdown of Uranium-Fueled Thermal Reactors." Approved by Subcommittee ANS-5, ANS Standards Committee, October 1971). This standard has been approved for incorporation by reference by the Director of the Federal Register. A copy of the standard is available for inspection at the NRC Library, 11545 Rockville Pike, Rockville, Maryland 20852-2738. The fraction of the locally generated gamma energy that is deposited in the fuel (including the cladding) may be different from 1.0; the value used shall be justified by a suitable calculation. - 5. Metal—Water Reaction Rate. The rate of energy release, hydrogen generation, and cladding oxidation from the metal/water reaction shall be calculated using the Baker-Just equation (Baker, L., Just, L.C., "Studies of Metal Water Reactions at High Temperatures, III. Experimental and Theoretical Studies of the Zirconium-Water Reaction," ANL-6548, page 7, May 1962). This publication has been approved for incorporation by reference by the Director of the Federal Register. A copy of the publication is available